當前位置:首頁 » 工作應聘 » 應聘聘演算法工程師

應聘聘演算法工程師

發布時間: 2021-03-08 07:03:46

1. 想從事演算法工程師這個崗位要考什麼證件嗎

演算法復工程師是一個比較制高端的職位,理論上也不需要學歷,但是碩士博士肯定是給人第一印象會好很多。這個主要難度是理解各類數據科學的演算法,這對數學要求是很高的。七月在線的演算法工程師課程有很多,現在也有團購活動,你可以去了解下。這個應該是要一定的基礎才可以學習,希望對你有幫助。

2. 應聘演算法工程師 簡歷需要寫上各種演算法嗎

不需要寫明,只需寫你已成功實施的項目即可。面試者若是同行自然會知道你的項目會涉及哪些演算法。

3. 要面試演算法工程師,大神給點相關經驗啊

演算法是比較復雜又基礎的學科,每個學編程的人都會學習大量的演算法。而根據統計,以下這18個問題是面試中最容易遇到的,本文給出了一些基本答案,供演算法方向工程師或對此感興趣的程序員參考。
1)請簡單解釋演算法是什麼?
演算法是一個定義良好的計算過程,它將一些值作為輸入並產生相應的輸出值。簡單來說,它是將輸入轉換為輸出的一系列計算步驟。
2)解釋什麼是快速排序演算法?
快速排序演算法能夠快速排序列表或查詢。它基於分割交換排序的原則,這種類型的演算法佔用空間較小,它將待排序列表分為三個主要部分:
·小於Pivot的元素
·樞軸元素Pivot(選定的比較值)
·大於Pivot的元素
3)解釋演算法的時間復雜度?
演算法的時間復雜度表示程序運行完成所需的總時間,它通常用大O表示法來表示。
4)請問用於時間復雜度的符號類型是什麼?
用於時間復雜度的符號類型包括:
·Big Oh:它表示小於或等於目標多項式
·Big Omega:它表示大於或等於目標多項式
·Big Theta:它表示與目標多項式相等
·Little Oh:它表示小於目標多項式
·Little Omega:它表示大於目標多項式
5)解釋二分法檢索如何工作?
在二分法檢索中,我們先確定數組的中間位置,然後將要查找的值與數組中間位置的值進行比較,若小於數組中間值,則要查找的值應位於該中間值之前,依此類推,不斷縮小查找范圍,直至得到最終結果。
6)解釋是否可以使用二分法檢索鏈表?
由於隨機訪問在鏈表中是不可接受的,所以不可能到達O(1)時間的中間元素。因此,對於鏈表來說,二分法檢索是不可以的(對順序鏈表或排序後的鏈表是可以用的)。
7)解釋什麼是堆排序?
堆排序可以看成是選擇排序的改進,它可以定義為基於比較的排序演算法。它將其輸入劃分為未排序和排序的區域,通過不斷消除最小元素並將其移動到排序區域來收縮未排序區域。
8)說明什麼是Skip list?
Skip list數據結構化的方法,它允許演算法在符號表或字典中搜索、刪除和插入元素。在Skip list中,每個元素由一個節點表示。搜索函數返回與key相關的值的內容。插入操作將指定的鍵與新值相關聯,刪除操作可刪除指定的鍵。
9)解釋插入排序演算法的空間復雜度是多少?
插入排序是一種就地排序演算法,這意味著它不需要額外的或僅需要少量的存儲空間。對於插入排序,它只需要將單個列表元素存儲在初始數據的外側,從而使空間復雜度為O(1)。
10)解釋什麼是「哈希演算法」,它們用於什麼?
「哈希演算法」是一個哈希函數,它使用任意長度的字元串,並將其減少為唯一的固定長度字元串。它用於密碼有效性、消息和數據完整性以及許多其他加密系統。
11)解釋如何查找鏈表是否有循環?
要知道鏈表是否有循環,我們將採用兩個指針的方法。如果保留兩個指針,並且在處理兩個節點之後增加一個指針,並且在處理每個節點之後,遇到指針指向同一個節點的情況,這只有在鏈表有循環時才會發生。
12)解釋加密演算法的工作原理?
加密是將明文轉換為稱為「密文」的密碼格式的過程。要轉換文本,演算法使用一系列被稱為「鍵」的位來進行計算。密鑰越大,創建密文的潛在模式數越多。大多數加密演算法使用長度約為64到128位的固定輸入塊,而有些則使用流方法。
13)列出一些常用的加密演算法?
一些常用的加密演算法是:
·3-way
·Blowfish
·CAST
·CMEA
·GOST
·DES 和Triple DES
·IDEA
·LOKI等等
14)解釋一個演算法的最佳情況和最壞情況之間有什麼區別?
·最佳情況:演算法的最佳情況解釋為演算法執行最佳的數據排列。例如,我們進行二分法檢索,如果目標值位於正在搜索的數據中心,則這就是最佳情況,最佳情況時間復雜度為0。
·最差情況:給定演算法的最差輸入參考。例如快速排序,如果選擇關鍵值的子列表的最大或最小元素,則會導致最差情況出現,這將導致時間復雜度快速退化到O(n2)。
15)解釋什麼是基數排序演算法?
基數排序又稱「桶子法」,是通過比較數字將其分配到不同的「桶里」來排序元素的。它是線性排序演算法之一。
16)解釋什麼是遞歸演算法?
遞歸演算法是一個解決復雜問題的方法,將問題分解成較小的子問題,直到分解的足夠小,可以輕松解決問題為止。通常,它涉及一個調用自身的函數。
17)提到遞歸演算法的三個定律是什麼?
所有遞歸演算法必須遵循三個規律:
·遞歸演算法必須有一個基點
·遞歸演算法必須有一個趨向基點的狀態變化過程
·遞歸演算法必須自我調用
18)解釋什麼是冒泡排序演算法?
冒泡排序演算法也稱為下沉排序。在這種類型的排序中,要排序的列表的相鄰元素之間互相比較。如果它們按順序排列錯誤,將交換值並以正確的順序排列,直到最終結果「浮」出水面。
滿意記得採納哈

4. 演算法工程師的年薪大概多少我應屆畢業生

一般來說演算法工程師是比較不錯的崗位,比普通的工程師薪資要高點。具體多少,專你得看你應聘的公屬司是什麼樣的背景。三資還是民營。每家公司都不同。應屆畢業生就業能有4000-9000不等,取決於你申請的公司和你自身的能力。

5. 演算法工程師 就業前景

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者Java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

6. 東軟的社會招聘流程是怎樣的 准備投演算法工程師或者軟體工程師方向的職位

工作地點是哪裡?給你一個自薦郵箱,寫明應聘方向和意向工作地點。[email protected]

7. 機械電子碩士能否應聘BRT演算法工程師

我也這么想的,研一機電但是想做控制演算法

8. 只會c語言可以應聘演算法工程師嗎

不可以的,就算會java,c++多種語言也未必能當演算法工程師的,演算法工程師側重演算法,你必須要演算法夠好才可以的。演算法工程師不好當阿。

9. 演算法工程師是個什麼崗位

演算法工程師是企業內部負責演算法這一塊的工程師,包括演算法設計,演算法優化

10. 演算法工程師這個職位未來發展有前途嗎

現在計算機應用來方面的工源作是最好找的,而且在一些大城市比如上海,南京等軟體研發部的月薪是非常高的。如果立志掌握好幾門熱門的計算機語言,對軟體專業的大學生來說是非常好的出路。
現在最熱門的計算機語言包括c++,c#,java,.net等,這四種語言方面的人才是大公司最青睞的對象。
如果立志做程序研發,作為大三的學生,同時應該把數據結構,編譯原理,演算法設計技巧等學科掌握牢固,這將為你今後的事業打下夯實的基礎。

熱點內容
鬼片高清畫質。電影。 發布:2024-08-19 09:14:10 瀏覽:650
一家看電影網 發布:2024-08-19 08:57:54 瀏覽:155
韓國大屍度電影推薦 發布:2024-08-19 08:55:58 瀏覽:719
接吻電影的名字美國 發布:2024-08-19 08:41:41 瀏覽:758
韓劇女主高中就懷孕了劇名 發布:2024-08-19 08:00:29 瀏覽:692
藍色頭發電影女主角 發布:2024-08-19 07:51:59 瀏覽:849
台灣電影老師上了學生 發布:2024-08-19 07:36:20 瀏覽:964
兩人吃屎的電影 發布:2024-08-19 07:25:07 瀏覽:450
有裸露下體的大尺度電影嗎 發布:2024-08-19 07:20:50 瀏覽:790
好看的電影在線觀看免費 發布:2024-08-19 06:55:37 瀏覽:912